
Chapter 9

Correlation

9.1 Standard scores

In this chapter we look at relationships between variables. For example, we
have a sense that height is related to weight; people who are taller tend to
be heavier. Correlation is a description of this kind of relationship.

A challenge in measuring correlation is that the variables we want to com-
pare might not be expressed in the same units. For example, height might
be in centimeters and weight in kilograms. And even if they are in the same
units, they come from different distributions.

There are two common solutions to these problems:

1. Transform all values to standard scores. This leads to the Pearson
coefficient of correlation.

2. Transform all values to their percentile ranks. This leads to the Spear-
man coefficient.

If X is a series of values, xi, we can convert to standard scores by subtracting
the mean and dividing by the standard deviation: zi = (xi − µ) / σ.

The numerator is a deviation: the distance from the mean. Dividing by
σ normalizes the deviation, so the values of Z are dimensionless (no units)
and their distribution has mean 0 and variance 1.

If X is normally-distributed, so is Z; but if X is skewed or has outliers, so
does Z. In those cases it is more robust to use percentile ranks. If Rcontains
the percentile ranks of the values in X, the distribution of Ris uniform be-
tween 0 and 100, regardless of the distribution of X.
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9.2 Covariance
Covariance is a measure of the tendency of two variables to vary together.
If we have two series, X and Y, their deviations from the mean are

dxi = xi − µX

dyi = yi − µY

where µX is the mean of X and µY is the mean of Y. If X and Y vary together,
their deviations tend to have the same sign.

If we multiply them together, the product is positive when the deviations
have the same sign and negative when they have the opposite sign. So
adding up the products gives a measure of the tendency to vary together.

Covariance is the mean of these products:

Cov(X, Y) =
1
n ∑ dxidyi

where n is the length of the two series (they have to be the same length).

Covariance is useful in some computations, but it is seldom reported as a
summary statistic because it is hard to interpret. Among other problems, its
units are the product of the units of X and Y. So the covariance of weight
and height might be in units of kilogram-meters, which doesn’t mean much.

Exercise 9.1 Write a function called Cov that takes two lists and computes
their covariance. To test your function, compute the covariance of a list
with itself and confirm that Cov(X, X) = Var(X).

You can download a solution from http://thinkstats.com/correlation.

py.

9.3 Correlation
One solution to this problem is to divide the deviations by σ, which yields
standard scores, and compute the product of standard scores:

pi =
(xi − µX)

σX

(yi − µY)

σY

The mean of these products is

ρ =
1
n ∑ pi
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Figure 9.1: Examples of datasets with a range of correlations.

Or we can rewrite ρ by factoring out σX and σY:

ρ =
Cov(X, Y)

σXσY

This value is called Pearson’s correlation after Karl Pearson, an influential
early statistician. It is easy to compute and easy to interpret. Because stan-
dard scores are dimensionless, so is ρ.

Pearson’s correlation is always between -1 and +1 (including both). The
magnitude indicates the strength of the correlation. If ρ = 1 the variables
are perfectly correlated, which means that if you know one, you can make
a perfect prediction about the other. The same is true if ρ = −1. It means
that the variables are negatively correlated, but for purposes of prediction,
a negative correlation is just as good as a positive one.

Most correlation in the real world is not perfect, but it is still useful. For
example, if you know someone’s height, you might be able to guess their
weight. You might not get it exactly right, but your guess will be better
than if you didn’t know the height. Pearson’s correlation is a measure of
how much better.

So if ρ = 0, does that mean there is no relationship between the variables?
Unfortunately, no. Pearson’s correlation only measures linear relationships.
If there’s a nonlinear relationship, ρ understates the strength of the depen-
dence.

Figure 9.1 is from http://wikipedia.org/wiki/Correlation_and_
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Figure 9.2: Simple scatterplot of weight versus height for the respondents
in the BRFSS.

dependence. It shows scatterplots and correlation coefficients for several
carefully-constructed datasets.

The top row shows linear relationships with a range of correlations; you
can use this row to get a sense of what different values of ρ look like.
The second row shows perfect correlations with a range of slopes, which
demonstrates that correlation is unrelated to slope (we’ll talk about esti-
mating slope soon). The third row shows variables that are clearly related,
but because the relationship is non-linear, the correlation coefficient is 0.

The moral of this story is that you should always look at a scatterplot of
your data before blindly computing a correlation coefficient.

Exercise 9.2 Write a function called Corr that takes two lists and computes
their correlation. Hint: use thinkstats.Var and the Cov function you wrote
in the previous exercise.

To test your function, compute the covariance of a list with itself and
confirm that Corr(X, X) is 1. You can download a solution from http:

//thinkstats.com/correlation.py.

9.4 Making scatterplots in pyplot

The simplest way to check for a relationship between two variables is a scat-
terplot, but making a good scatterplot is not always easy. As an example, I’ll
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Figure 9.3: Scatterplot with jittered data.
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Figure 9.4: Scatterplot with jittering and transparency.
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Figure 9.5: Scatterplot with binned data using pyplot.hexbin.

plot weight versus height for the respondents in the BRFSS (see Section 4.5).
pyplot provides a function named scatter that makes scatterplots:

import matplotlib.pyplot as pyplot

pyplot.scatter(heights, weights)

Figure 9.2 shows the result. Not surprisingly, it looks like there is a positive
correlation: taller people tend to be heavier. But this is not the best represen-
tation of the data, because the data are packed into columns. The problem is
that the heights were rounded to the nearest inch, converted to centimeters,
and then rounded again. Some information is lost in translation.

We can’t get that information back, but we can minimize the effect on the
scatterplot by jittering the data, which means adding random noise to re-
verse the effect of rounding off. Since these measurements were rounded to
the nearest inch, they can be off by up to 0.5 inches or 1.3 cm. So I added
uniform noise in the range −1.3 to 1.3:

jitter = 1.3

heights = [h + random.uniform(-jitter, jitter) for h in heights]

Figure 9.3 shows the result. Jittering the data makes the shape of the re-
lationship clearer. In general you should only jitter data for purposes of
visualization and avoid using jittered data for analysis.

Even with jittering, this is not the best way to represent the data. There are
many overlapping points, which hides data in the dense parts of the figure
and gives disproportionate emphasis to outliers.
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We can solve that with the alpha parameter, which makes the points partly
transparent:

pyplot.scatter(heights, weights, alpha=0.2)

Figure 9.4 shows the result. Overlapping data points look darker, so dark-
ness is proportional to density. In this version of the plot we can see an
apparent artifact: a horizontal line near 90 kg or 200 pounds. Since this
data is based on self-reports in pounds, the most likely explanation is some
responses were rounded off (possibly down).

Using transparency works well for moderate-sized datasets, but this figure
only shows the first 1000 records in the BRFSS, out of a total of 414509.

To handle larger datasets, one option is a hexbin plot, which divides the
graph into hexagonal bins and colors each bin according to how many data
points fall in it. pyplot provides a function called hexbin:

pyplot.hexbin(heights, weights, cmap=matplotlib.cm.Blues)

Figure 9.5 shows the result with a blue colormap. An advantage of a hexbin
is that it shows the shape of the relationship well, and it is efficient for large
datasets. A drawback is that it makes the outliers invisible.

The moral of this story is that it is not easy to make a scatterplot that is not
potentially misleading. You can download the code for these figures from
http://thinkstats.com/brfss_scatter.py.

9.5 Spearman’s rank correlation

Pearson’s correlation works well if the relationship between variables is lin-
ear and if the variables are roughly normal. But it is not robust in the pres-
ence of outliers.

Anscombe’s quartet demonstrates this effect; it contains four data sets with
the same correlation. One is a linear relation with random noise, one is a
non-linear relation, one is a perfect relation with an outlier, and one has no
relation except an artifact caused by an outlier. You can read more about it
at http://wikipedia.org/wiki/Anscombe's_quartet.

Spearman’s rank correlation is an alternative that mitigates the effect of out-
liers and skewed distributions. To compute Spearman’s correlation, we
have to compute the rank of each value, which is its index in the sorted
sample. For example, in the sample {7, 1, 2, 5} the rank of the value 5 is 3,
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because it appears third if we sort the elements. Then we compute Pearson’s
correlation for the ranks.

An alternative to Spearman’s is to apply a transform that makes the data
more nearly normal, then compute Pearson’s correlation for the trans-
formed data. For example, if the data are approximately lognormal, you
could take the log of each value and compute the correlation of the logs.

Exercise 9.3 Write a function that takes a sequence and returns a list that
contains the rank for each element. For example, if the sequence is {7, 1, 2,
5}, the result should be { 4, 1, 2, 3}.

If the same value appears more than once, the strictly correct solution is to
assign each of them the average of their ranks. But if you ignore that and
assign them ranks in arbitrary order, the error is usually small.

Write a function that takes two sequences (with the same length) and com-
putes their Spearman rank coefficient. You can download a solution from
http://thinkstats.com/correlation.py.

Exercise 9.4 Download http://thinkstats.com/brfss.py and http://

thinkstats.com/brfss_scatter.py. Run them and confirm that you can
read the BRFSS data and generate scatterplots.

Comparing the scatterplots to Figure 9.1, what value do you expect for Pear-
son’s correlation? What value do you get?

Because the distribution of adult weight is lognormal, there are outliers that
affect the correlation. Try plotting log(weight) versus height, and compute
Pearson’s correlation for the transformed variable.

Finally, compute Spearman’s rank correlation for weight and height. Which
coefficient do you think is the best measure of the strength of the relation-
ship? You can download a solution from http://thinkstats.com/brfss_

corr.py.

9.6 Least squares fit
Correlation coefficients measure the strength and sign of a relationship, but
not the slope. There are several ways to estimate the slope; the most com-
mon is a linear least squares fit. A “linear fit” is a line intended to model the
relationship between variables. A “least squares” fit is one that minimizes
the mean squared error (MSE) between the line and the data1.

1See http://wikipedia.org/wiki/Simple_linear_regression.
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Suppose we have a sequence of points, Y, that we want to express as a
function of another sequence X. If there is a linear relationship between
X and Y with intercept α and slope β, we expect each yi to be roughly α +
β xi.

But unless the correlation is perfect, this prediction is only approximate.
The deviation, or residual, is

εi = (α + βxi) − yi

The residual might be due to random factors like measurement error, or
non-random factors that are unknown. For example, if we are trying to
predict weight as a function of height, unknown factors might include diet,
exercise, and body type.

If we get the parameters α and β wrong, the residuals get bigger, so it makes
intuitive sense that the parameters we want are the ones that minimize the
residuals.

As usual, we could minimize the absolute value of the residuals, or their
squares, or their cubes, etc. The most common choice is to minimize the
sum of squared residuals

min
α,β

∑ ε2
i

Why? There are three good reasons and one bad one:

• Squaring has the obvious feature of treating positive and negative
residuals the same, which is usually what we want.

• Squaring gives more weight to large residuals, but not so much weight
that the largest residual always dominates.

• If the residuals are independent of x, random, and normally dis-
tributed with µ = 0 and constant (but unknown) σ, then the least
squares fit is also the maximum likelihood estimator of α and β.2

• The values of α̂ and β̂ that minimize the squared residuals can be com-
puted efficiently.

That last reason made sense when computational efficiency was more im-
portant than choosing the method most appropriate to the problem at hand.
That’s no longer the case, so it is worth considering whether squared resid-
uals are the right thing to minimize.

2See Press et al., Numerical Recipes in C, Chapter 15 at http://www.nrbook.com/a/

bookcpdf/c15-1.pdf.
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For example, if you are using values of X to predict values of Y, guessing
too high might be better (or worse) than guessing too low. In that case you
might want to compute some cost function, cost(εi), and minimize total cost.

However, computing a least squares fit is quick, easy and often good
enough, so here’s how:

1. Compute the sample means, x̄ and ȳ, the variance of X, and the co-
variance of X and Y.

2. The estimated slope is

β̂ =
Cov(X, Y)

Var(X)

3. And the intercept is
α̂ = ȳ− β̂x̄

To see how this is derived, you can read http://wikipedia.org/wiki/

Numerical_methods_for_linear_least_squares.

Exercise 9.5 Write a function named LeastSquares that takes X and Y and
computes α̂ and β̂. You can download a solution from http://thinkstats.

com/correlation.py.

Exercise 9.6 Using the data from the BRFSS again, compute the linear least
squares fit for log(weight) versus height. You can download a solution from
http://thinkstats.com/brfss_corr.py.

Exercise 9.7 The distribution of wind speeds in a given location deter-
mines the wind power density, which is an upper bound on the aver-
age power that a wind turbine at that location can generate. According
to some sources, empirical distributions of wind speed are well modeled
by a Weibull distribution (see http://wikipedia.org/wiki/Wind_power#

Distribution_of_wind_speed).

To evaluate whether a location is a viable site for a wind turbine, you can
set up an anemometer to measure wind speed for a period of time. But it is
hard to measure the tail of the wind speed distribution accurately because,
by definition, events in the tail don’t happen very often.

One way to address this problem is to use measurements to estimate the
parameters of a Weibull distribution, then integrate over the continuous
PDF to compute wind power density.
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To estimate the parameters of a Weibull distribution, we can use the trans-
formation from Exercise 4.6 and then use a linear fit to find the slope and
intercept of the transformed data.

Write a function that takes a sample from a Weibull distribution and esti-
mates its parameters.

Now write a function that takes the parameters of a Weibull distribution of
wind speed and computes average wind power density (you might have to
do some research for this part).

9.7 Goodness of fit

Having fit a linear model to the data, we might want to know how good it
is. Well, that depends on what it’s for. One way to evaluate a model is its
predictive power.

In the context of prediction, the quantity we are trying to guess is called
a dependent variable and the quantity we are using to make the guess is
called an explanatory or independent variable.

To measure the predictive power of a model, we can compute the coefficient
of determination, more commonly known as “R-squared”:

R2 = 1− Var(ε)
Var(Y)

To understand what R2 means, suppose (again) that you are trying to guess
someone’s weight. If you didn’t know anything about them, your best strat-
egy would be to guess ȳ; in that case the MSE of your guesses would be
Var(Y):

MSE =
1
n ∑(ȳ− yi)

2 = Var(Y)

But if I told you their height, you would guess α̂ + β̂ xi; in that case your
MSE would be Var(ε).

MSE =
1
n ∑(α̂ + β̂xi − yi)

2 = Var(ε)

So the term Var(ε)/Var(Y) is the ratio of mean squared error with and with-
out the explanatory variable, which is the fraction of variability left unex-
plained by the model. The complement, R2, is the fraction of variability
explained by the model.
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If a model yields R2 = 0.64, you could say that the model explains 64% of
the variability, or it might be more precise to say that it reduces the MSE of
your predictions by 64%.

In the context of a linear least squares model, it turns out that there is a
simple relationship between the coefficient of determination and Pearson’s
correlation coefficient, ρ:

R2 = ρ2

See http://wikipedia.org/wiki/Howzzat!

Exercise 9.8 The Wechsler Adult Intelligence Scale (WAIS) is meant to be a
measure of intelligence; scores are calibrated so that the mean and standard
deviation in the general population are 100 and 15.

Suppose that you wanted to predict someone’s WAIS score based on their
SAT scores. According to one study, there is a Pearson correlation of 0.72
between total SAT scores and WAIS scores.

If you applied your predictor to a large sample, what would you expect to
be the mean squared error (MSE) of your predictions?

Hint: What is the MSE if you always guess 100?

Exercise 9.9 Write a function named Residuals that takes X, Y, α̂ and β̂ and
returns a list of εi.

Write a function named CoefDetermination that takes the εi and Y and re-
turns R2. To test your functions, confirm that R2 = ρ2. You can download a
solution from http://thinkstats.com/correlation.py.

Exercise 9.10 Using the height and weight data from the BRFSS (one more
time), compute α̂, β̂ and R2. If you were trying to guess someone’s weight,
how much would it help to know their height? You can download a solution
from http://thinkstats.com/brfss_corr.py.

9.8 Correlation and Causation

The web comic xkcd demonstrates the difficulty of inferring causation:

In general, a relationship between two variables does not tell you whether
one causes the other, or the other way around, or both, or whether they
might both be caused by something else altogether.
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Figure 9.6: From xkcd.com by Randall Munroe.

This rule can be summarized with the phrase “Correlation does not im-
ply causation,” which is so pithy it has its own Wikipedia page: http:

//wikipedia.org/wiki/Correlation_does_not_imply_causation.

So what can you do to provide evidence of causation?

1. Use time. If A comes before B, then A can cause B but not the other
way around (at least according to our common understanding of cau-
sation). The order of events can help us infer the direction of causa-
tion, but it does not preclude the possibility that something else causes
both A and B.

2. Use randomness. If you divide a large population into two groups at
random and compute the means of almost any variable, you expect
the difference to be small. This is a consequence of the Central Limit
Theorem (so it is subject to the same requirements).

If the groups are nearly identical in all variable but one, you can elim-
inate spurious relationships.

This works even if you don’t know what the relevant variables are, but
it works even better if you do, because you can check that the groups
are identical.

These ideas are the motivation for the randomized controlled trial, in
which subjects are assigned randomly to two (or more) groups: a treatment
group that receives some kind of intervention, like a new medicine, and
a control group that receives no intervention, or another treatment whose
effects are known.

A randomized controlled trial is the most reliable way to demonstrate
a causal relationship, and the foundation of science-based medicine (see
http://wikipedia.org/wiki/Randomized_controlled_trial).
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Unfortunately, controlled trials are only possible in the laboratory sciences,
medicine, and a few other disciplines. In the social sciences, controlled ex-
periments are rare, usually because they are impossible or unethical.

One alternative is to look for a natural experiment, where different “treat-
ments” are applied to groups that are otherwise similar. One danger of
natural experiments is that the groups might differ in ways that are not ap-
parent. You can read more about this topic at http://wikipedia.org/wiki/
Natural_experiment.

In some cases it is possible to infer causal relationships using regression
analysis. A linear least squares fit is a simple form of regression that ex-
plains a dependent variable using one explanatory variable. There are sim-
ilar techniques that work with arbitrary numbers of independent variables.

I won’t cover those techniques here, but there are also simple ways to con-
trol for spurious relationships. For example, in the NSFG, we saw that first
babies tend to be lighter than others (see Section 3.6). But birth weight is
also correlated with the mother’s age, and mothers of first babies tend to be
younger than mothers of other babies.

So it may be that first babies are lighter because their mothers are younger.
To control for the effect of age, we could divide the mothers into age groups
and compare birth weights for first babies and others in each age group.

If the difference between first babies and others is the same in each age
group as it was in the pooled data, we conclude that the difference is not
related to age. If there is no difference, we conclude that the effect is entirely
due to age. Or, if the difference is smaller, we can quantify how much of the
effect is due to age.

Exercise 9.11 The NSFG data includes a variable named agepreg that
records the age of the mother at the time of birth. Make a scatterplot of
mother’s age and baby’s weight for each live birth. Can you see a relation-
ship?

Compute a linear least-squares fit for these variables. What are the units
of the estimated parameters α̂ and β̂? How would you summarize these
results in a sentence or two?

Compute the average age for mothers of first babies and the average age
of other mothers. Based on the difference in ages between the groups, how
much difference do you expect in the mean birth weights? What fraction of
the actual difference in birth weights is explained by the difference in ages?
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You can download a solution to this problem from http://thinkstats.

com/agemodel.py. If you are curious about multivariate regression, you can
run http://thinkstats.com/age_lm.py which shows how to use the R sta-
tistical computing package from Python. But that’s a whole other book.

9.9 Glossary
correlation: a description of the dependence between variables.

normalize: To transform a set of values so that their mean is 0 and their
variance is 1.

standard score: A value that has been normalized.

covariance: a measure of the tendency of two variables to vary together.

rank: The index where an element appears in a sorted list.

least squares fit: A model of a dataset that minimizes the sum of squares of
the residuals.

residual: A measure of the deviation of an actual value from a model.

dependent variable: A variable we are trying to predict or explain.

independent variable: A variable we are using to predict a dependent vari-
able, also called an explanatory variable.

coefficient of determination: A measure of the goodness of fit of a linear
model.

randomized controlled trial: An experimental design in which subject are
divided into groups at random, and different groups are given differ-
ent treatments.

treatment: An change or intervention applied to one group in a controlled
trial.

control group: A group in a controlled trial that receives no treatment, or a
treatment whose effect is known.

natural experiment: An experimental design that takes advantage of a nat-
ural division of subjects into groups in ways that are at least approxi-
mately random.


